Skip to main content

JacobiNormSQR2

Square norm of Jacobi polynomial.

This function returns the following:

Pnα,βdλ2=1+1Pnα,βPnα,β(1x)α(1+x)βdx\Vert P_{n}^{\alpha,\beta}\Vert_{d\lambda}^{2}=\int_{-1}^{+1}P_{n}^ {\alpha,\beta}P_{n}^{\alpha,\beta}(1-x)^{\alpha}(1+x)^{\beta}dx
INTERFACE
MODULE PURE FUNCTION JacobiNormSQR2(n, alpha, beta) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
REAL(DFP), INTENT(IN) :: alpha
REAL(DFP), INTENT(IN) :: beta
REAL(DFP) :: ans(0:n)
END FUNCTION JacobiNormSQR2
END INTERFACE

Example