Skip to main content

JacobiGaussQuadrature

This routine computes the n Gauss-Quadrature points.

They are n zeros of a jacobi polynomial defined with respect to the weight (1x)α(1+x)β(1-x)^{\alpha} (1+x)^{\beta}.

All Gauss-Quadrature points are inside (1,1)(-1, 1)

Interface

INTERFACE
MODULE SUBROUTINE JacobiGaussQuadrature(n, alpha, beta, pt, wt)
INTEGER(I4B), INTENT(IN) :: n
!! It represents the order of Jacobi polynomial
REAL(DFP), INTENT(IN) :: alpha
REAL(DFP), INTENT(IN) :: beta
REAL(DFP), INTENT(OUT) :: pt(:)
!! the size is 1 to n
REAL(DFP), OPTIONAL, INTENT(OUT) :: wt(:)
!! the size is 1 to n
END SUBROUTINE JacobiGaussQuadrature
END INTERFACE

Examples