Skip to main content

JacobiGradientEvalSum

Evaluate finite sum of gradient of Jacobi polynomials.

Interface 1

INTERFACE
MODULE PURE FUNCTION JacobiGradientEvalSum(n, alpha, beta, x, coeff) &
& RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: alpha
!! alpha of Jacobi polynomial
REAL(DFP), INTENT(IN) :: beta
!! beta of Jacobi Polynomial
REAL(DFP), INTENT(IN) :: x
!! point
REAL(DFP), INTENT(IN) :: coeff(0:n)
!! Coefficient of finite sum, size = n+1
REAL(DFP) :: ans
!! Evaluate Jacobi polynomial of order n at point x
END FUNCTION JacobiGradientEvalSum
END INTERFACE

Interface 2

INTERFACE
MODULE PURE FUNCTION JacobiGradientEvalSum(n, alpha, beta, x, coeff) &
& RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: alpha
!! alpha of Jacobi polynomial
REAL(DFP), INTENT(IN) :: beta
!! beta of Jacobi Polynomial
REAL(DFP), INTENT(IN) :: x(:)
!! point
REAL(DFP), INTENT(IN) :: coeff(0:n)
!! Coefficient of finite sum, size = n+1
REAL(DFP) :: ans(SIZE(x))
!! Evaluate Jacobi polynomial of order n at point x
END FUNCTION JacobiGradientEvalSum
END INTERFACE

Interface 3

INTERFACE
MODULE PURE FUNCTION JacobiGradientEvalSum(n, alpha, beta, x, coeff, k) &
& RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: alpha
!! alpha of Jacobi polynomial
REAL(DFP), INTENT(IN) :: beta
!! beta of Jacobi Polynomial
REAL(DFP), INTENT(IN) :: x
!! point
REAL(DFP), INTENT(IN) :: coeff(0:n)
!! Coefficient of finite sum, size = n+1
INTEGER(I4B), INTENT(IN) :: k
!! order of derivative
REAL(DFP) :: ans
!! Evaluate Jacobi polynomial of order n at point x
END FUNCTION JacobiGradientEvalSum
END INTERFACE

Interface 4

INTERFACE
MODULE PURE FUNCTION JacobiGradientEvalSum(n, alpha, beta, x, coeff, k) &
& RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: alpha
!! alpha of Jacobi polynomial
REAL(DFP), INTENT(IN) :: beta
!! beta of Jacobi Polynomial
REAL(DFP), INTENT(IN) :: x(:)
!! point
REAL(DFP), INTENT(IN) :: coeff(0:n)
!! Coefficient of finite sum, size = n+1
INTEGER(I4B), INTENT(IN) :: k
!! kth order derivative
REAL(DFP) :: ans(SIZE(x))
!! Evaluate Jacobi polynomial of order n at point x
END FUNCTION JacobiGradientEvalSum
END INTERFACE

Examples