Skip to main content

ForceVector

ForceVector1

Consider the following integral

FI=ΩNIdΩF_{I}=\int_{\Omega}N^{I}d\Omega

Fortran interface:

  MODULE PURE FUNCTION ForceVector(test) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
REAL(DFP), ALLOCATABLE :: ans(:)
END FUNCTION ForceVector

ForceVector2

FI=ΩρNIdΩF_{I}=\int_{\Omega}\rho N^{I}d\Omega
  MODULE PURE FUNCTION ForceVector(test, c, crank) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
TYPE(FEVariable_), INTENT( IN ) :: c
TYPE(FEVariableScalar_), INTENT( IN ) :: crank
REAL(DFP), ALLOCATABLE :: ans(:)
END FUNCTION ForceVector

ForceVector3

F(i,I)=ΩviNIdΩF(i,I)=\int_{\Omega}v_{i}N^{I}d\Omega
  MODULE PURE FUNCTION ForceVector(test, c, crank) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
TYPE(FEVariable_), INTENT( IN ) :: c
TYPE(FEVariableVector_), INTENT( IN ) :: crank
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION ForceVector

ForceVector4

F(i,j,I)=ΩkijNIdΩF(i,j,I)=\int_{\Omega}k_{ij}N^{I}d\Omega
  MODULE PURE FUNCTION ForceVector(test, c, crank) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
TYPE(FEVariable_), INTENT( IN ) :: c
TYPE(FEVariableMatrix_), INTENT( IN ) :: crank
REAL(DFP), ALLOCATABLE :: ans(:, :, :)
END FUNCTION ForceVector

ForceVector5

FI=Ωρ1ρ2NIdΩF_{I}=\int_{\Omega}\rho_{1}\rho_{2}N^{I}d\Omega
  MODULE PURE FUNCTION ForceVector(test, c1, c1rank, c2, c2rank) &
& RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
TYPE(FEVariable_), INTENT( IN ) :: c1
TYPE(FEVariable_), INTENT( IN ) :: c2
TYPE(FEVariableScalar_), INTENT( IN ) :: c1rank
TYPE(FEVariableScalar_), INTENT( IN ) :: c2rank
REAL(DFP), ALLOCATABLE :: ans(:)
END FUNCTION ForceVector

ForceVector6

F(i,I)=ΩρviNIdΩF(i,I)=\int_{\Omega}\rho v_{i}N^{I}d\Omega
  MODULE PURE FUNCTION ForceVector(test, c1, c1rank, c2, c2rank) &
& RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
TYPE(FEVariable_), INTENT( IN ) :: c1
TYPE(FEVariable_), INTENT( IN ) :: c2
TYPE(FEVariableScalar_), INTENT( IN ) :: c1rank
TYPE(FEVariableVector_), INTENT( IN ) :: c2rank
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION ForceVector

ForceVector7

F(i,j,I)=ΩρkijNIdΩF(i,j,I)=\int_{\Omega}\rho k_{ij}N^{I}d\Omega
  MODULE PURE FUNCTION ForceVector(test, c1, c1rank, c2, c2rank) &
& RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
TYPE(FEVariable_), INTENT( IN ) :: c1
TYPE(FEVariable_), INTENT( IN ) :: c2
TYPE(FEVariableScalar_), INTENT( IN ) :: c1rank
TYPE(FEVariableMatrix_), INTENT( IN ) :: c2rank
REAL(DFP), ALLOCATABLE :: ans(:, :, :)
END FUNCTION ForceVector