Skip to main content

JacobiGaussRadauQuadrature

This routine returns the n+1n+1 Quadrature points and weights.

The Gauss-Radau quadrature points consists one of the end points denoted by aa. So aa can be ±1\pm 1. The remaining nn points are internal to (1,+1)(-1, +1), and they are n-zeros of Jacobi polynomial of order n with respect to the following weight.

  • (1x)α(1+x)β(x+1)(1-x)^{\alpha} (1+x)^{\beta} (x+1) if a=1a=-1.
  • (1x)α(1+x)β(1x)(1-x)^{\alpha} (1+x)^{\beta} (1-x) if a=+1a=+1.

Here n is the order of Jacobi polynomial.

If a=1a=1 then n+1 quadrature point will be +1 If a=1a=-1 then 1st quadrature point will be -1

INTERFACE
MODULE SUBROUTINE JacobiGaussRadauQuadrature(a, n, alpha, beta, pt, wt)
REAL(DFP), INTENT(IN) :: a
!! the value of one of the end points
!! it should be either -1 or +1
INTEGER(I4B), INTENT(IN) :: n
!! order of jacobi polynomial
REAL(DFP), INTENT(IN) :: alpha
!! alpha of Jacobi polynomial
REAL(DFP), INTENT(IN) :: beta
!! beta of Jacobi polynomial
REAL(DFP), INTENT(OUT) :: pt(:)
!! n+1 quadrature points from 1 to n+1
REAL(DFP), OPTIONAL, INTENT(OUT) :: wt(:)
!! n+1 weights from 1 to n+1
END SUBROUTINE JacobiGaussRadauQuadrature
END INTERFACE

Examples