Skip to main content

GetJacobiRecurrenceCoeff

Recurrence coefficients are for monic and nonmonic jacobi polynomials.

Interface 1

Monic polynomials

INTERFACE
MODULE PURE SUBROUTINE GetJacobiRecurrenceCoeff(n, alpha, beta, &
& alphaCoeff, betaCoeff)
INTEGER(I4B), INTENT(IN) :: n
!! order of jacobi polynomial, it should be greater than 1
REAL(DFP), INTENT(IN) :: alpha
REAL(DFP), INTENT(IN) :: beta
REAL(DFP), INTENT(OUT) :: alphaCoeff(0:n - 1)
REAL(DFP), INTENT(OUT) :: betaCoeff(0:n - 1)
END SUBROUTINE GetJacobiRecurrenceCoeff
END INTERFACE

Interface 2

These recurrence coefficients are for non-monic jacobi polynomials.

Pn+1(α,β)=(anx+bn)Pn(α,β)cnPn1(α,β),n=1,2, P_{n+1}^{(\alpha,\beta)}=\left(a_{n}x+b_{n}\right)P_{n}^{(\alpha,\beta)} -c_{n}P_{n-1}^{(\alpha,\beta)},\quad n=1,2,\cdots
INTERFACE
MODULE PURE SUBROUTINE GetJacobiRecurrenceCoeff2(n, alpha, beta, &
& A, B, C)
INTEGER(I4B), INTENT(IN) :: n
!! order of jacobi polynomial, it should be greater than 1
REAL(DFP), INTENT(IN) :: alpha
REAL(DFP), INTENT(IN) :: beta
REAL(DFP), INTENT(OUT) :: A(0:n - 1)
REAL(DFP), INTENT(OUT) :: B(0:n - 1)
REAL(DFP), INTENT(OUT) :: C(0:n - 1)
END SUBROUTINE GetJacobiRecurrenceCoeff2
END INTERFACE