STConvectiveMatrix example 2
!!! note ""
This example shows how to USE the SUBROUTINE called ConvectiveMatrix
to create a space-time convective matrix. Line2 in space and time.
Here, we want to DO the following.
!!! warning "" is convective velocity, which can be a constant, or a FUNCTION of space-time, or some nonlinear FUNCTION.
In this example, convective matrix is formed for
- [[ReferenceLine_]] Line2 element for space
- [[ReferenceLine_]] Line2 element for time
- [[QuadraturePoint_]]
GaussLegendre
- nodal velocity, constant in time
Modules and classes
- [[ElemshapeData_]]
Usage
PROGRAM main
USE easifemBase
IMPLICIT NONE
TYPE(STElemshapeData_), ALLOCATABLE :: test(:)
TYPE(ElemshapeData_) :: time_elemsd
TYPE(Quadraturepoint_) :: quadFortime
TYPE(Quadraturepoint_) :: quadForspace
TYPE(ReferenceLine_):: refelemForSpace
TYPE(ReferenceLine_) :: refelemForTime
INTEGER(I4B) :: ii
INTEGER(I4B), PARAMETER :: nsd=1, nns=2, nnt=2
INTEGER(I4B), PARAMETER :: orderForTime=2, orderForSpace=1
REAL(DFP), PARAMETER :: tij(1, 2) = RESHAPE([-1,1], [1,2])
REAL(DFP), PARAMETER :: xij(1, 2)=RESHAPE([-1,1], [nsd, nns])
! spatial nodal coordinates
REAL(DFP), ALLOCATABLE :: xija(:, :, :), mat(:,:)
! spatial-temporal nodal coordinates
REAL(DFP), parameter :: c(1,2) = reshape([1.0,1.0],[1,2])
type(FEVariable_) :: cvar
!!! note ""
First, we initiate a [[ReferenceLine_]] element for time domain. Note that nsd
should be 1 when making reference element for time domain. Generate the quadrature points, and initiates an instance of [[ElemshapeData_]].
refelemForTime= ReferenceLine(nsd=1)
CALL Initiate(obj=quadFortime, &
& refelem=refelemForTime,&
& order=orderForTime, &
& quadratureType="GaussLegendre" )
CALL Initiate( &
& obj=time_elemsd, &
& quad=quadForTime, &
& refelem=refelemForTime, &
& ContinuityType=typeH1,&
& InterpolType=TypeLagrangeInterpolation)
CALL Set(obj=time_elemsd, &
& val=tiJ, N=time_elemsd%N, &
& dNdXi=time_elemsd%dNdXi)
!!! note "" Initiate [[STElemshapeData_]].
CALL Initiate(obj=test, elemsd=time_elemsd)
!!! note "" Generating shape functions for space-elements. Here, we are selecting a triangular element
refelemForSpace = ReferenceLine(nsd=nsd)
CALL Initiate(obj=quadForSpace, &
& refelem=refelemForSpace, &
& order=orderForSpace, &
& quadratureType='GaussLegendre')
DO ii = 1, SIZE(test)
CALL Initiate( obj=test(ii), &
& quad=quadForSpace, &
& refelem=refelemForSpace, &
& ContinuityType=typeH1, &
& InterpolType=TypeLagrangeInterpolation)
END DO
!!! note ""
Setting the remaining DATA in obj. Here, xija
are the space-time nodal coordinates.
CALL Reallocate(xija, nsd, nns, nnt)
DO ii = 1, nnt; xija(:, :, ii) = xij; END DO
DO ii = 1, SIZE(test)
CALL Set(obj=test(ii), &
& val=xija, &
& N=test(ii)%N, &
& dNdXi=test(ii)%dNdXi, &
& T=test(ii)%T)
END DO
!!! note "" Let us now create the space-time convective matrix.
cvar = NodalVariable(c, typeFEVariableVector, typeFEVariableSpace)
mat=ConvectiveMatrix(test=test, trial=test, term1=del_none, &
& term2=del_x, c=cvar)
CALL Display(mat, "mat:")
??? example "Results"
mat:
----------------------------------------
-0.333333 0.333333 -0.166667 0.166667
-0.333333 0.333333 -0.166667 0.166667
-0.166667 0.166667 -0.333333 0.333333
-0.166667 0.166667 -0.333333 0.333333
mat=ConvectiveMatrix(test=test, trial=test, term1=del_x, &
& term2=del_none, c=cvar)
CALL Display(mat, "mat:")
??? example "Results"
mat:
------------------------------------------
-0.333333 -0.333333 -0.166667 -0.166667
0.333333 0.333333 0.166667 0.166667
-0.166667 -0.166667 -0.333333 -0.333333
0.166667 0.166667 0.333333 0.333333
!!! settings "Cleanup"
END PROGRAM main