STConvectiveMatrix
Theory
Now we want to compute the space-time convective finite element matrix for following PDE.
∂ u i ∂ t + c k ∂ u i ∂ x k + ⋯ \frac{\partial u_i}{\partial t} + c_k \frac{\partial u_i}{\partial x_k} + \cdots ∂ t ∂ u i + c k ∂ x k ∂ u i + ⋯
We would like to compute the following matrices.
4 M ( I , J , a , b ) = a δ u i I ∫ Q n N I T a c k ∂ N J T b ∂ x k d Q b u i J {}^{4}M(I,J,a,b) = {}^{a}\delta u_{iI} \quad \int_{Q_n} N^I T_a c_k \frac{\partial N^J T_b}{\partial x_k} {dQ} \quad {}^{b}u_{iJ} 4 M ( I , J , a , b ) = a δ u i I ∫ Q n N I T a c k ∂ x k ∂ N J T b d Q b u i J
4 M ( I , J , a , b ) = a δ u i I ∫ Q n c k ∂ N I T a ∂ x k N J T b d Q b u i J {}^{4}M(I,J,a,b) = {}^{a}\delta u_{iI} \quad \int_{Q_n} c_k \frac{\partial N^I T_a}{\partial x_k} N^J T_b {dQ} \quad {}^{b}u_{iJ} 4 M ( I , J , a , b ) = a δ u i I ∫ Q n c k ∂ x k ∂ N I T a N J T b d Q b u i J
Now we want to compute the space-time convective finite element matrix for following PDE.
∂ U ∂ t + ∂ f(U) ∂ x + ∂ g(U) ∂ y + ∂ h(U) ∂ z + ⋯ \frac{\partial \textbf{U}}{\partial t} + \frac{\partial \textbf{f(U)}}{\partial x} + \frac{\partial \textbf{g(U)}}{\partial y} + \frac{\partial \textbf{h(U)}}{\partial z} + \cdots ∂ t ∂ U + ∂ x ∂ f(U) + ∂ y ∂ g(U) + ∂ z ∂ h(U) + ⋯
where U , f , g , h ∈ R m \textbf{U}, \textbf{f}, \textbf{g}, \textbf{h} \in R^m U , f , g , h ∈ R m . In this case we wish to compute the following matrices.
4 M ( I , J , a , b ) = δ a U i I ∫ Q n N I T a ∂ N J T b ∂ x d Q b f i J {}^{4}M(I,J,a,b) = \delta {}^{a} U_{iI} \quad \int_{Q_n} N^I T_a \frac{\partial N^J T_b}{\partial x} {dQ} \quad {}^{b}f_{iJ} 4 M ( I , J , a , b ) = δ a U i I ∫ Q n N I T a ∂ x ∂ N J T b d Q b f i J
4 M ( I , J , a , b ) = δ a U i I ∫ Q n ∂ N I T a ∂ x N J T b d Q b f i J {}^{4}M(I,J,a,b) = \delta {}^{a} U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial x} N^J T_b {dQ} \quad {}^{b}f_{iJ} 4 M ( I , J , a , b ) = δ a U i I ∫ Q n ∂ x ∂ N I T a N J T b d Q b f i J
4 M ( I , J , a , b ) = δ a U i I ∫ Q n N I T a ∂ N J T b ∂ x d Q b g i J {}^{4}M(I,J,a,b) = \delta {}^{a} U_{iI} \quad \int_{Q_n} N^I T_a \frac{\partial N^J T_b}{\partial x} {dQ} \quad {}^{b}g_{iJ} 4 M ( I , J , a , b ) = δ a U i I ∫ Q n N I T a ∂ x ∂ N J T b d Q b g i J
4 M ( I , J , a , b ) = δ a U i I ∫ Q n ∂ N I T a ∂ x N J T b d Q b g i J {}^{4}M(I,J,a,b) = \delta {}^{a} U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial x} N^J T_b {dQ} \quad {}^{b}g_{iJ} 4 M ( I , J , a , b ) = δ a U i I ∫ Q n ∂ x ∂ N I T a N J T b d Q b g i J
4 M ( I , J , a , b ) = δ a U i I ∫ Q n N I T a ∂ N J T b ∂ x d Q b h i J {}^{4}M(I,J,a,b) = \delta {}^{a} U_{iI} \quad \int_{Q_n} N^I T_a \frac{\partial N^J T_b}{\partial x} {dQ} \quad {}^{b}h_{iJ} 4 M ( I , J , a , b ) = δ a U i I ∫ Q n N I T a ∂ x ∂ N J T b d Q b h i J
4 M ( I , J , a , b ) = δ a U i I ∫ Q n ∂ N I T a ∂ x N J T b d Q b h i J {}^{4}M(I,J,a,b) = \delta {}^{a} U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial x} N^J T_b {dQ} \quad {}^{b}h_{iJ} 4 M ( I , J , a , b ) = δ a U i I ∫ Q n ∂ x ∂ N I T a N J T b d Q b h i J
Now we want to compute the space-time convective finite element matrix for following PDE.
∂ u i ∂ t + c k ∂ u i ∂ x k + ⋯ \frac{\partial u_i}{\partial t} + c_k \frac{\partial u_i}{\partial x_k} + \cdots ∂ t ∂ u i + c k ∂ x k ∂ u i + ⋯
We would like to compute the following matrices.
4 M ( I , J , a , b ) = δ a u i I ∫ Q n ∂ N I T a ∂ t c k h ∂ N J T b ∂ x k d Q b u i J {}^{4}M(I,J,a,b) = \delta {}^{a}u_{iI} \int_{Q_n} \frac{ \partial N^I T_a}{\partial t} c_{k}^{h} \frac{\partial N^J T_b}{\partial x_k} {dQ} \quad {}^{b}u_{iJ} 4 M ( I , J , a , b ) = δ a u i I ∫ Q n ∂ t ∂ N I T a c k h ∂ x k ∂ N J T b d Q b u i J
4 M ( I , J , a , b ) = δ a u i I ∫ Q n c k h ∂ N I T a ∂ x k ∂ N J T b ∂ t d Q b u i J {}^{4}M(I,J,a,b) = \delta {}^{a}u_{iI} \int_{Q_n} c_{k}^{h} \frac{\partial N^I T_a}{\partial x_k} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}u_{iJ} 4 M ( I , J , a , b ) = δ a u i I ∫ Q n c k h ∂ x k ∂ N I T a ∂ t ∂ N J T b d Q b u i J
Now we want to compute the space-time convective finite element matrix for following PDE.
∂ U ∂ t + ∂ f(U) ∂ x + ∂ g(U) ∂ y + ∂ h(U) ∂ z + ⋯ \frac{\partial \textbf{U}}{\partial t} + \frac{\partial \textbf{f(U)}}{\partial x} + \frac{\partial \textbf{g(U)}}{\partial y} + \frac{\partial \textbf{h(U)}}{\partial z} + \cdots ∂ t ∂ U + ∂ x ∂ f(U) + ∂ y ∂ g(U) + ∂ z ∂ h(U) + ⋯
where U , f , g , h ∈ R m \textbf{U}, \textbf{f}, \textbf{g}, \textbf{h} \in R^m U , f , g , h ∈ R m . In this case we wish to compute the following matrices.
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ t ∂ N J T b ∂ x d Q b f i J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial t} \frac{\partial N^J T_b}{\partial x} {dQ} \quad {}^{b}f_{iJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ t ∂ N I T a ∂ x ∂ N J T b d Q b f i J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ x ∂ N J T b ∂ t d Q b f i J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial x} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}f_{iJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ x ∂ N I T a ∂ t ∂ N J T b d Q b f i J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ t ∂ N J T b ∂ y d Q b g i J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial t} \frac{\partial N^J T_b}{\partial y} {dQ} \quad {}^{b}g_{iJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ t ∂ N I T a ∂ y ∂ N J T b d Q b g i J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ y ∂ N J T b ∂ t d Q b g i J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial y} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}g_{iJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ y ∂ N I T a ∂ t ∂ N J T b d Q b g i J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ t ∂ N J T b ∂ z d Q b h i J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial t} \frac{\partial N^J T_b}{\partial z} {dQ} \quad {}^{b}h_{iJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ t ∂ N I T a ∂ z ∂ N J T b d Q b h i J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ z ∂ N J T b ∂ t d Q b h i J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial z} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}h_{iJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ z ∂ N I T a ∂ t ∂ N J T b d Q b h i J
Now we want to compute the space-time convective finite element matrix for following PDE.
∂ U ∂ t + A 1 ∂ U ∂ x + A 2 ∂ U ∂ y + A 3 ∂ U ∂ z + ⋯ \frac{\partial \textbf{U}}{\partial t} + \mathbf{A_1} \frac{\partial \textbf{U}}{\partial x} + \mathbf{A_2} \frac{\partial \textbf{U}}{\partial y} + \mathbf{A_3} \frac{\partial \textbf{U}}{\partial z} + \cdots ∂ t ∂ U + A 1 ∂ x ∂ U + A 2 ∂ y ∂ U + A 3 ∂ z ∂ U + ⋯
where U ∈ R m \textbf{U} \in R^m U ∈ R m , A i ∈ R m × m \mathbf{A_i} \in R^{m \times m} A i ∈ R m × m . In this case we wish to compute the following matrices.
4 M ( I , J , a , b ) = a δ U i I ∫ Q n N I T a [ A 1 ] i j ∂ N J T b ∂ x d Q b f j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} N^I T_a [ \mathbf{A_1} ]_{ij} \frac{\partial N^J T_b}{\partial x} {dQ} \quad {}^{b}f_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n N I T a [ A 1 ] ij ∂ x ∂ N J T b d Q b f j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 1 ] j i ∂ N I T a ∂ x N J T b d Q b f j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [ \mathbf{A_1} ]_{ji} \frac{\partial N^I T_a}{\partial x} N^J T_b {dQ} \quad {}^{b}f_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 1 ] ji ∂ x ∂ N I T a N J T b d Q b f j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n N I T a [ A 2 ] i j ∂ N J T b ∂ y d Q b g j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} N^I T_a [\mathbf{A_2}]_{ij} \frac{\partial N^J T_b}{\partial y} {dQ} \quad {}^{b}g_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n N I T a [ A 2 ] ij ∂ y ∂ N J T b d Q b g j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 2 ] j i ∂ N I T a ∂ y N J T b d Q b g j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [\mathbf{A_2}]_{ji} \frac{\partial N^I T_a}{\partial y} N^J T_b {dQ} \quad {}^{b}g_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 2 ] ji ∂ y ∂ N I T a N J T b d Q b g j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n N I T a [ A 3 ] i j ∂ N J T b ∂ z d Q b h j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} N^I T_a [\mathbf{A_3}]_{ij} \frac{\partial N^J T_b}{\partial z} {dQ} \quad {}^{b}h_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n N I T a [ A 3 ] ij ∂ z ∂ N J T b d Q b h j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 3 ] j i ∂ N I T a ∂ z N J T b d Q b h j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [\mathbf{A_3}]_{ji} \frac{\partial N^I T_a}{\partial z} N^J T_b {dQ} \quad {}^{b}h_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 3 ] ji ∂ z ∂ N I T a N J T b d Q b h j J
The shape of each 4 M ( : , : , a , b ) {}^{4}M(:,:,a,b) 4 M ( : , : , a , b ) is ( N N S × m , N N S × m ) (N_{NS} \times m, N_{NS} \times m) ( N NS × m , N NS × m ) . In this case there will be coupling between different components of U \mathbf{U} U . This coupling is due to A i \mathbf{A_i} A i . The structure of any of the above 4 M {}^{4}\mathbf{M} 4 M is given as
4 M ( : , : , a , b ) = [ M 11 ⋯ M 1 m ⋮ ⋱ ⋮ M m 1 ⋯ M m m ] {}^{4}\mathbf{M}(:,:,a,b) =
\begin{bmatrix}
\mathbf{M_{11}} & \cdots & \mathbf{M_{1m}} \\
\vdots & \ddots & \vdots \\
\mathbf{M_{m1}} & \cdots & \mathbf{M_{mm}} \\
\end{bmatrix} 4 M ( : , : , a , b ) = M 11 ⋮ M m1 ⋯ ⋱ ⋯ M 1m ⋮ M mm
Each M i j \mathbf{M_{ij}} M ij has shape ( N n s × N n s ) (N_{ns} \times N_{ns}) ( N n s × N n s ) .
Now we want to compute the space-time convective finite element matrix for following PDE.
∂ U ∂ t + A 1 ∂ U ∂ x + A 2 ∂ U ∂ y + A 3 ∂ U ∂ z + ⋯ \frac{\partial \textbf{U}}{\partial t} + \mathbf{A_1} \frac{\partial \textbf{U}}{\partial x} + \mathbf{A_2} \frac{\partial \textbf{U}}{\partial y} + \mathbf{A_3} \frac{\partial \textbf{U}}{\partial z} + \cdots ∂ t ∂ U + A 1 ∂ x ∂ U + A 2 ∂ y ∂ U + A 3 ∂ z ∂ U + ⋯
where U ∈ R m \textbf{U} \in R^m U ∈ R m , A i ∈ R m × m \mathbf{A_i} \in R^{m \times m} A i ∈ R m × m . In this case we wish to compute the following matrices.
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ t [ A 1 ] i j ∂ N J T b ∂ x d Q b f j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial t} [ \mathbf{A_1} ]_{ij} \frac{\partial N^J T_b}{\partial x} {dQ} \quad {}^{b}f_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ t ∂ N I T a [ A 1 ] ij ∂ x ∂ N J T b d Q b f j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 1 ] j i ∂ N I T a ∂ x ∂ N J T b ∂ t d Q b f j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [ \mathbf{A_1} ]_{ji} \frac{\partial N^I T_a}{\partial x} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}f_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 1 ] ji ∂ x ∂ N I T a ∂ t ∂ N J T b d Q b f j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ t [ A 2 ] i j ∂ N J T b ∂ y d Q b g j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial t} [\mathbf{A_2}]_{ij} \frac{\partial N^J T_b}{\partial y} {dQ} \quad {}^{b}g_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ t ∂ N I T a [ A 2 ] ij ∂ y ∂ N J T b d Q b g j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 2 ] j i ∂ N I T a ∂ y ∂ N J T b ∂ t d Q b g j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [\mathbf{A_2}]_{ji} \frac{\partial N^I T_a}{\partial y} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}g_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 2 ] ji ∂ y ∂ N I T a ∂ t ∂ N J T b d Q b g j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ N I T a ∂ t [ A 3 ] i j ∂ N J T b ∂ z d Q b h j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} \frac{\partial N^I T_a}{\partial t} [\mathbf{A_3}]_{ij} \frac{\partial N^J T_b}{\partial z} {dQ} \quad {}^{b}h_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n ∂ t ∂ N I T a [ A 3 ] ij ∂ z ∂ N J T b d Q b h j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 3 ] j i ∂ N I T a ∂ z ∂ N J T b ∂ t d Q b h j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [\mathbf{A_3}]_{ji} \frac{\partial N^I T_a}{\partial z} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}h_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 3 ] ji ∂ z ∂ N I T a ∂ t ∂ N J T b d Q b h j J
The shape of each 4 M ( : , : , a , b ) {}^{4}M(:,:,a,b) 4 M ( : , : , a , b ) is ( N N S × m , N N S × m ) (N_{NS} \times m, N_{NS} \times m) ( N NS × m , N NS × m ) . In this case there will be coupling between different components of U \mathbf{U} U . This coupling is due to A i \mathbf{A_i} A i . The structure of any of the above 4 M {}^{4}\mathbf{M} 4 M is given as
4 M ( : , : , a , b ) = [ M 11 ⋯ M 1 m ⋮ ⋱ ⋮ M m 1 ⋯ M m m ] {}^{4}\mathbf{M}(:,:,a,b) =
\begin{bmatrix}
\mathbf{M_{11}} & \cdots & \mathbf{M_{1m}} \\
\vdots & \ddots & \vdots \\
\mathbf{M_{m1}} & \cdots & \mathbf{M_{mm}} \\
\end{bmatrix} 4 M ( : , : , a , b ) = M 11 ⋮ M m1 ⋯ ⋱ ⋯ M 1m ⋮ M mm
Each M i j \mathbf{M_{ij}} M ij has shape ( N n s × N n s ) (N_{ns} \times N_{ns}) ( N n s × N n s ) .
Now consider the following terms in a pde.
A 0 ∂ U ∂ t + A 1 ∂ U ∂ x + A 2 ∂ U ∂ y + A 3 ∂ U ∂ t + ⋯ \mathbf{A_0} \frac{\partial U}{\partial t} + \mathbf{A_1} \frac{\partial U}{\partial x} + \mathbf{A_2} \frac{\partial \mathbf{U}}{\partial y} + \mathbf{A_3} \frac{\partial U}{\partial t} + \cdots A 0 ∂ t ∂ U + A 1 ∂ x ∂ U + A 2 ∂ y ∂ U + A 3 ∂ t ∂ U + ⋯
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 0 ] k i ∂ N I T a ∂ t [ A 1 ] k j ∂ N J T b ∂ x d Q b f j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [ \mathbf{A_0}]_{ki} \frac{\partial N^I T_a}{\partial t} [ \mathbf{A_1} ]_{kj} \frac{\partial N^J T_b}{\partial x} {dQ} \quad {}^{b}f_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 0 ] ki ∂ t ∂ N I T a [ A 1 ] kj ∂ x ∂ N J T b d Q b f j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 1 ] k i ∂ N I T a ∂ x [ A 0 ] k j ∂ N J T b ∂ t d Q b f j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [ \mathbf{A_1} ]_{ki} \frac{\partial N^I T_a}{\partial x} [\mathbf{A_0}]_{kj} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}f_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 1 ] ki ∂ x ∂ N I T a [ A 0 ] kj ∂ t ∂ N J T b d Q b f j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 0 ] k i ∂ N I T a ∂ t [ A 2 ] k j ∂ N J T b ∂ y d Q b g j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [ \mathbf{A_0}]_{ki}\frac{\partial N^I T_a}{\partial t} [\mathbf{A_2}]_{kj} \frac{\partial N^J T_b}{\partial y} {dQ} \quad {}^{b}g_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 0 ] ki ∂ t ∂ N I T a [ A 2 ] kj ∂ y ∂ N J T b d Q b g j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 2 ] k i ∂ N I T a ∂ y [ A 0 ] k j ∂ N J T b ∂ t d Q b g j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [\mathbf{A_2}]_{ki} \frac{\partial N^I T_a}{\partial y} [ \mathbf{A_0}]_{kj} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}g_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 2 ] ki ∂ y ∂ N I T a [ A 0 ] kj ∂ t ∂ N J T b d Q b g j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 0 ] k i ∂ N I T a ∂ t [ A 3 ] k j ∂ N J T b ∂ z d Q b h j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [ \mathbf{A_0}]_{ki}\frac{\partial N^I T_a}{\partial t} [\mathbf{A_3}]_{kj} \frac{\partial N^J T_b}{\partial z} {dQ} \quad {}^{b}h_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 0 ] ki ∂ t ∂ N I T a [ A 3 ] kj ∂ z ∂ N J T b d Q b h j J
4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 3 ] k i ∂ N I T a ∂ z [ A 0 ] k j ∂ N J T b ∂ t d Q b h j J {}^{4}M(I,J,a,b) = {}^{a}\delta U_{iI} \quad \int_{Q_n} [\mathbf{A_3}]_{ki} \frac{\partial N^I T_a}{\partial z} [ \mathbf{A_0}]_{kj} \frac{\partial N^J T_b}{\partial t} {dQ} \quad {}^{b}h_{jJ} 4 M ( I , J , a , b ) = a δ U i I ∫ Q n [ A 3 ] ki ∂ z ∂ N I T a [ A 0 ] kj ∂ t ∂ N J T b d Q b h j J
Methods
STConvectiveMatrix 1
Implementation: STCM_1
!!! note "Interface"
CALL ConvectiveMatrix ( test , trial , c , term1 , term2 )
!!! example ""
M ( I , J , a , b ) = ∫ I n ∫ Ω c j ∂ N I T a ∂ x j ⋅ N J T b d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {{c_j}\frac{{\partial {N^I}{T_a}}}{{\partial {x_j}}} \cdot {N^J}{T_b}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω c j ∂ x j ∂ N I T a ⋅ N J T b d Ω d t
CALL ConvectiveMatrix ( test , trial , c , term1 = del_x , term2 = del_none , projectOn = 'test' )
M ( I , J , a , b ) = ∫ I n ∫ Ω N I T a c j ∂ N J T b ∂ x j d Ω d t M\left(I,J,a,b\right)=\int_{I_{n}}\int_{\Omega}N^{I}T_{a}c_{j}\frac{\partial N^{J}T_{b}}{\partial x_{j}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω N I T a c j ∂ x j ∂ N J T b d Ω d t
CALL ConvectiveMatrix ( test , trial , c , term1 = del_none , term2 = del_x , projectOn = 'trial' )
C
denotes the convective velocity. It can be Rank-1, Rank-2, Rank-3 array wrapped inside the [[FEVariable_]].
If the convective velocity is constant in both space and time, C
should be a rank-1, C(:)
.
The spatial nodal values of convective velocity, when it is constant in time domain, is given by a rank-2 array C(:,:)
The temporal values of convective velocity, when it is constant in time domain, is given by a rank-2 array C(:,:)
Space-time nodal values of convective velocity is given by a rank-3 array C(:,:,:)
You can learn more about this method from following pages
[[STConvectiveMatrix_test_1]] Line2 for space and time, constant velocity
[[STConvectiveMatrix_test_2]] Line2 for space and time, spatial nodal velocity
[[STConvectiveMatrix_test_3]] Line2 for space and time, space-time nodal velocity
[[STConvectiveMatrix_test_4]] Line2 for space and time, constant velocity
STConvectiveMatrix 2
Implementation: STCM_2
and STCM_3
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x c ⋅ N J T b d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {\frac{{\partial {N^I}{T_a}}}{{\partial x}} c \cdot {N^J}{T_b}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x ∂ N I T a c ⋅ N J T b d Ω d t
This matrix can be computed using the following command.
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_none , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ y c ⋅ N J T b d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {\frac{{\partial {N^I}{T_a}}}{{\partial y}} c \cdot {N^J}{T_b}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ y ∂ N I T a c ⋅ N J T b d Ω d t
This matrix can be computed using the following command.
mat2 = ConvectiveMatrix ( test , trial , term1 = del_y , term2 = del_none , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ z c ⋅ N J T b d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {\frac{{\partial {N^I}{T_a}}}{{\partial z}} c \cdot {N^J}{T_b}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ z ∂ N I T a c ⋅ N J T b d Ω d t
This matrix can be computed using the following command.
mat2 = ConvectiveMatrix ( test , trial , term1 = del_z , term2 = del_none , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω N J T b c ⋅ ∂ N J T b ∂ x d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {{N^J}{T_b} c \cdot \frac{{\partial {N^J}{T_b}}}{{\partial x}}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω N J T b c ⋅ ∂ x ∂ N J T b d Ω d t
This matrix can be computed using the following command.
mat2 = ConvectiveMatrix ( test , trial , term1 = del_none , term2 = del_x , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω N J T b c ⋅ ∂ N J T b ∂ y d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {{N^J}{T_b} c \cdot \frac{{\partial {N^J}{T_b}}}{{\partial y}}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω N J T b c ⋅ ∂ y ∂ N J T b d Ω d t
This matrix can be computed using the following command.
mat2 = ConvectiveMatrix ( test , trial , term1 = del_none , term2 = del_y , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω N J T b c ⋅ ∂ N J T b ∂ z d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {{N^J}{T_b} c \cdot \frac{{\partial {N^J}{T_b}}}{{\partial z}}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω N J T b c ⋅ ∂ z ∂ N J T b d Ω d t
This matrix can be computed using the following command.
mat2 = ConvectiveMatrix ( test , trial , term1 = del_none , term2 = del_z , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x i c ⋅ N J T b d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {\frac{{\partial {N^I}{T_a}}}{{\partial x_{i}}} c \cdot {N^J}{T_b}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x i ∂ N I T a c ⋅ N J T b d Ω d t
This matrix can be computed by setting dim=-1 as shown in the following command.
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x_all , term2 = del_none , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω N J T b c ⋅ ∂ N J T b ∂ x i d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{} {{N^J}{T_b} c \cdot \frac{{\partial {N^J}{T_b}}}{{\partial x_{i}}}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω N J T b c ⋅ ∂ x i ∂ N J T b d Ω d t
This matrix can be computed using the following command.
mat2 = ConvectiveMatrix ( test , trial , term1 = del_none , term2 = del_x_all , c )
!!! note ""
You can learn more about this subroutine from following pages.
[[STConvectiveMatrix_test_21]] Line2 in space and time, FEVariable is constant
[[STConvectiveMatrix_test_22]] Line2 in space and time, FEVariable is space-nodal values
[[STConvectiveMatrix_test_23]] Line2 in space and time, FEVariable is space-time values
[[STConvectiveMatrix_test_24]] Triangle3 in space and Line2 in time, FEVariable is constant
[[STConvectiveMatrix_test_25]] Triangle3 in space and Line2 in time, FEVariable is spatial nodal values
[[STConvectiveMatrix_test_26]] Triangle3 in space and Line2 in time, FEVariable is space-time nodal values
[[STConvectiveMatrix_test_27]] Triangle3 in space and Line2 in time, FEVariable is space-time nodal values
STConvectiveMatrix 3
Implementation: STCM_4
and STCM_5
.
M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ N I T a ∂ x ∂ N J T b ∂ t d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}c\frac{\partial N^{I}T_{a}}{\partial x}\frac{\partial N^{J}T_{b}}{\partial t}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ x ∂ N I T a ∂ t ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_t , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ N I T a ∂ y ∂ N J T b ∂ t d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}c\frac{\partial N^{I}T_{a}}{\partial y}\frac{\partial N^{J}T_{b}}{\partial t}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ y ∂ N I T a ∂ t ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_y , term2 = del_t , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ N I T a ∂ z ∂ N J T b ∂ t d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}c\frac{\partial N^{I}T_{a}}{\partial z}\frac{\partial N^{J}T_{b}}{\partial t}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ z ∂ N I T a ∂ t ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_z , tzerm2 = del_t , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ N I T a ∂ t ∂ N J T b ∂ x d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}c\frac{\partial N^{I}T_{a}}{\partial t}\frac{\partial N^{J}T_{b}}{\partial x}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ t ∂ N I T a ∂ x ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_x , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ N I T a ∂ t ∂ N J T b ∂ y d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}c\frac{\partial N^{I}T_{a}}{\partial t}\frac{\partial N^{J}T_{b}}{\partial y}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ t ∂ N I T a ∂ y ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_y , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ N I T a ∂ t ∂ N J T b ∂ z d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}c\frac{\partial N^{I}T_{a}}{\partial t}\frac{\partial N^{J}T_{b}}{\partial z}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ t ∂ N I T a ∂ z ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_z , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ N I T a ∂ x i ∂ N J T b ∂ t d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}c\frac{\partial N^{I}T_{a}}{\partial x_{i}}\frac{\partial N^{J}T_{b}}{\partial t}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ x i ∂ N I T a ∂ t ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x_all , term2 = del_t , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ N I T a ∂ t ∂ N J T b ∂ x i d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}c\frac{\partial N^{I}T_{a}}{\partial t}\frac{\partial N^{J}T_{b}}{\partial x_{i}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω c ∂ t ∂ N I T a ∂ x i ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_x_all , c )
You can learn more about these methods from following pages 🚀💎🔗
[[STConvectiveMatrix_test_31]]
[[STConvectiveMatrix_test_32]]
STConvectiveMatrix 4
Implementation: STCM_6
and STCM_7
.
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x c p ∂ N J T b ∂ x p d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_x , c = c , projectOn = "trial" )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ y c p ∂ N J T b ∂ x p d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial y}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ y ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_y , term2 = del_x , c = c , projectOn = "trial" )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ z c p ∂ N J T b ∂ x p d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial z}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ z ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_z , term2 = del_x , c = c , projectOn = "trial" )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x p c p ∂ N J T b ∂ x d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x_{p}}c_{p}\frac{\partial N^{J}T_{b}}{\partial x}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x p ∂ N I T a c p ∂ x ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_x , c = c , projectOn = "test" )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x p c p ∂ N J T b ∂ y d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x_{p}}c_{p}\frac{\partial N^{J}T_{b}}{\partial y}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x p ∂ N I T a c p ∂ y ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_y , c = c , projectOn = "test" )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x p c p ∂ N J T b ∂ z d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x_{p}}c_{p}\frac{\partial N^{J}T_{b}}{\partial z}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x p ∂ N I T a c p ∂ z ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_z , c = c , projectOn = "test" )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x i c p ∂ N J T b ∂ x p d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x_{i}}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x i ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x_all , term2 = del_x , c = c , & & projectOn = "trial" )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x p c p ∂ N J T b ∂ x i d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x_{p}}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_i}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x p ∂ N I T a c p ∂ x i ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , & & term2 = del_x_all , c = c , projectOn = "test" )
You can learn more about these methods from following pages.
[[STConvectiveMatrix_test_41]]
[[STConvectiveMatrix_test_42]]
STConvectiveMatrix 5
Implementation: STCM_8
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ t ∂ N J T b ∂ x p c p d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial t}\frac{\partial N^{J}T_{b}}{\partial x_{p}}c_{p}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ t ∂ N I T a ∂ x p ∂ N J T b c p d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_x , c ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_y , c ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_z , c ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_x_all , c )
M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ N I T a ∂ x p c p ∂ N J T b ∂ t d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x_{p}}c_{p}\frac{\partial N^{J}T_{b}}{\partial t}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ∂ x p ∂ N I T a c p ∂ t ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_t , c ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_y , term2 = del_t , c ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_z , term2 = del_t , c ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_x_all , term2 = del_t , c )
You can learn how to use these methods from following pages.
[[STConvectiveMatrix_test_51]]
[[STConvectiveMatrix_test_52]]
STConvectiveMatrix 6
Implementation: STCM_1b
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c j ∂ N I T a ∂ x j ⋅ N J T b d Ω d t M\left( {I,J,a,b} \right) = {\int_{{I_n}}^{} {\int_\Omega ^{}
\rho {{c_j}\frac{{\partial {N^I}{T_a}}}{{\partial {x_j}}} \cdot
{N^J}{T_b}d\Omega dt} } } M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c j ∂ x j ∂ N I T a ⋅ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x_all , term2 = del_none , & & c = c , rho = rho , projectionOn = 'test' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_none , & & c = c , rho = rho , projectionOn = 'test' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_y , term2 = del_none , & & c = c , rho = rho , projectionOn = 'test' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_z , term2 = del_none , & & c = c , rho = rho , projectionOn = 'test' )
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ N I T a c j ∂ N J T b ∂ x j d Ω d t M\left(I,J,a,b\right)=\int_{I_{n}}\int_{\Omega} \rho N^{I}T_{a}c_{j}\frac{\partial
N^{J}T_{b}}{\partial x_{j}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ N I T a c j ∂ x j ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_none , term2 = del_x_all , & & c = c , rho = rho , projectionOn = 'trial' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_none , term2 = del_x , & & c = c , rho = rho , projectionOn = 'trial' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_none , term2 = del_y , & & c = c , rho = rho , projectionOn = 'trial' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_none , term2 = del_z , & & c = c , rho = rho , projectionOn = 'trial' )
You can learn more about this method from following pages
[[STConvectiveMatrix_test_61]]
STConvectiveMatrix 7
Implementation: STCM_6b
and STCM_7b
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ N I T a ∂ x p ∂ N J T b ∂ x d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega} \rho c_{p}\frac{\partial N^{I}T_{a}}{\partial x_{p}}\frac{\partial N^{J}T_{b}}{\partial x} d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ x p ∂ N I T a ∂ x ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_x , & & c = c , rho = rho , projectionOn = 'test' )
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ N I T a ∂ x p ∂ N J T b ∂ y d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega} \rho c_{p}\frac{\partial N^{I}T_{a}}{\partial x_{p}}\frac{\partial N^{J}T_{b}}{\partial y}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ x p ∂ N I T a ∂ y ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_y , & & c = c , rho = rho , projectionOn = 'test' )
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ N I T a ∂ x p ∂ N J T b ∂ z d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega} \rho c_{p}\frac{\partial N^{I}T_{a}}{\partial x_{p}}\frac{\partial N^{J}T_{b}}{\partial z}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ x p ∂ N I T a ∂ z ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_z , & & c = c , rho = rho , projectionOn = 'test' )
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ N I T a ∂ x c p ∂ N J T b ∂ x p d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega} \rho \frac{\partial N^{I}T_{a}}{\partial x}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ x ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_x , & & c = c , rho = rho , projectionOn = 'trial' )
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ N I T a ∂ y c p ∂ N J T b ∂ x p d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega} \rho \frac{\partial N^{I}T_{a}}{\partial y}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ y ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_y , & & c = c , rho = rho , projectionOn = 'trial' )
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ N I T a ∂ z c p ∂ N J T b ∂ x p d Ω d t M(I,J,a,b)=\int_{I_{n}}\int_{\Omega} \rho \frac{\partial N^{I}T_{a}}{\partial z}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ z ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_z , & & c = c , rho = rho , projectionOn = 'trial' )
You can learn more about this method from following pages.
[[STConvectiveMatrix_test_71]]
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ N I T a ∂ x i c p ∂ N J T b ∂ x p d Ω d t M\left(I,J,a,b\right)=\int_{I_{n}}\int_{\Omega}\rho\frac{\partial N^{I}T_{a}}{\partial x_{i}}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ x i ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x_all , term2 = del_x , & & c = c , rho = rho , projectionOn = 'trial' )
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ N I T a ∂ x p ∂ N J T b ∂ x i d Ω d t M\left(I,J,a,b\right)=\int_{I_{n}}\int_{\Omega}\rho c_{p}\frac{\partial N^{I}T_{a}}{\partial x_{p}}\frac{\partial N^{J}T_{b}}{\partial x_{i}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ x p ∂ N I T a ∂ x i ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_x_all , & & c = c , rho = rho , projectionOn = 'test' )
You can learn more about this method from following pages
[[STConvectiveMatrix_test_72]]
STConvectiveMatrix 8
Implementation: STCM_8b
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ N I T a ∂ x p ∂ N J T b ∂ t d Ω d t M\left(I,J,a,b\right)=\int_{I_{n}}\int_{\Omega}\rho c_{p}\frac{\partial N^{I}T_{a}}{\partial x_{p}}\frac{\partial N^{J}T_{b}}{\partial t}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ c p ∂ x p ∂ N I T a ∂ t ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_x , term2 = del_t , & & c = c , rho = rho , projectionOn = 'test' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_y , term2 = del_t , & & c = c , rho = rho , projectionOn = 'test' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_z , term2 = del_t , & & c = c , rho = rho , projectionOn = 'test' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_x_all , term2 = del_t , & & c = c , rho = rho , projectionOn = 'test' )
M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ N I T a ∂ t c p ∂ N J T b ∂ x p d Ω d t M\left(I,J,a,b\right)=\int_{I_{n}}\int_{\Omega}\rho\frac{\partial N^{I}T_{a}}{\partial t}c_{p}\frac{\partial N^{J}T_{b}}{\partial x_{p}}d\Omega dt M ( I , J , a , b ) = ∫ I n ∫ Ω ρ ∂ t ∂ N I T a c p ∂ x p ∂ N J T b d Ω d t
mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_x , & & c = c , rho = rho , projectionOn = 'trial' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_y , & & c = c , rho = rho , projectionOn = 'trial' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_z , & & c = c , rho = rho , projectionOn = 'trial' ) mat2 = ConvectiveMatrix ( test , trial , term1 = del_t , term2 = del_x_all , & & c = c , rho = rho , projectionOn = 'trial' )
You can learn more about this method from following pages
[[STConvectiveMatrix_test_81]]