Lapack95 example 6
This example shows the use of SymGetLDL
method defined in Lapack95.
program main
use easifemBase
implicit none
real(dfp), allocatable :: A(:,:), E(:), D(:), exactL(:,:), exactD(:)
real(dfp) :: error
integer(i4b), allocatable :: ipiv(:)
integer(i4b) :: info
character(len=1) :: uplo
allocate(A(3,3), D(3), E(3), ipiv(3), exactD(3), exactL(3,3))
A(1, :) = [2, -1, 3]
A(2, :) = [-1, 2, 0]
A(3, :) = [3, 0, 1]
CALL Display( A, "A = " )
exactL(:,1) = [1., -0.5, 1.5]
exactL(:,2) = [0., 1., 1.]
exactL(:,3) = [0., 0., 1.]
exactD = [2., 1.5, -5.0]
uplo = "L"
CALL SymGetLDL(A=A, D=D, E=E, UPLO=uplo, IPIV=ipiv, info=info)
CALL Display( exactL, "exact L = " )
CALL Display( exactD, "exact D = " )
CALL Display( A, "L, permuted = " )
CALL Display( D, "D, permuted = " )
CALL Display( E, "E, permuted " )
CALL Display( ipiv, "permutation = " )
CALL Display( info, "info = " )
CALL Display(MATMUL( MATMUL(A, Diag(D) ), TRANSPOSE(A)), &
& "A = ")
end program main
A matrix is given by
A =
----------------------------
2.00000 -1.00000 3.00000
-1.00000 2.00000 0.00000
3.00000 0.00000 1.00000
exact L is given by:
exact L =
----------------------------
1.00000 0.00000 0.00000
-0.50000 1.00000 0.00000
1.50000 1.00000 1.00000
Computed L is given below.
L, permuted =
----------------------------
1.00000 0.00000 0.00000
-0.50000 1.00000 0.00000
1.50000 1.00000 1.00000
No permutation is performed in this case.
exact D is given by:
exact D =
----------
2.00000
1.50000
-5.00000
Computed D, is given below:
D, permuted =
--------------
2.00000
1.50000
-5.00000
The permutation is given by
permutation =
--------------
1
2
3
In this case, if we perform
We get
A =
----------------------------
2.00000 -1.00000 3.00000
-1.00000 2.00000 0.00000
3.00000 0.00000 1.00000
If you want to calculate exact D from computed D, please call LAPMT
routine and pass the ipiv
returned by the routine.