Lapack95 example 12
This example shows the use of SymGetLU
and SymLUSolve
method defined in Lapack95.
- We get LU decomposition of A in LU.
- In this example there are many rhs
- The result is obtained in x, not in rhs
- uplo = "U"
program main
use easifemBase
implicit none
real(dfp), allocatable :: LU(:, :), A(:,:), RHS(:,:), X(:,:), xexact( :,: )
real(dfp) :: error
integer(i4b) :: info
integer(i4b), allocatable :: ipiv(:)
character(len=1) :: uplo
allocate(LU(3,3), A(3,3), RHS(3,4), X(3,4), xexact(3,4), ipiv(3))
A(1, :) = [6, 15, 55]
A(2, :) = [15, 55, 225]
A(3, :) = [55, 225, 979]
CALL RANDOM_NUMBER(xexact)
xexact = xexact * 10.0
RHS = MATMUL( A, xexact )
CALL Display( A, "A = " )
CALL Display( xexact, "xexact = " )
CALL Display( RHS, "RHS = " )
uplo = "U"
CALL SymGetLU(A=A, LU=LU, UPLO=uplo, IPIV=ipiv, INFO=info)
CALL Display( info, "info from GETLU= " )
CALL SymLUSolve(A=LU, X=X, B=RHS, IPIV=ipiv, UPLO=uplo, INFO=info)
CALL Display( X, " X = " )
CALL Display( info, "info from LUSOLVE = " )
CALL Display(MAXVAL(ABS(X - xexact ) ), "Error = ")
end program main