Skip to main content

QuadraturePoint

Returns quadrature points on hexahedron.

Interface 1

INTERFACE QuadraturePoint_Hexahedron
MODULE FUNCTION QuadraturePoint_Hexahedron1( &
& order, &
& quadType, &
& xij, &
& alpha, &
& beta, &
& lambda) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: order
!! order of integrand in x, y, and z direction
INTEGER(I4B), INTENT(IN) :: quadType
!! quadrature point type
!! GaussLegendre
!! GaussLegendreLobatto
!! GaussLegendreRadauLeft
!! GaussLegendreRadauRight
!! GaussChebyshev1
!! GaussChebyshev1Lobatto
!! GaussChebyshev1RadauLeft
!! GaussChebyshev1RadauRight
!! GaussUltraspherical
!! GaussUltrasphericalLobatto
!! GaussUltrasphericalRadauLeft
!! GaussUltrasphericalRadauRight
!! GaussJacobi
!! GaussJacobiLobatto
!! GaussJacobiRadauLeft
!! GaussJacobiRadauRight
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! nodal coordiantes of hexahedron in xij format
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha
!! Jacobi parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: beta
!! Jacobi parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: lambda
!! Ultraspherical parameter
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! quadrature points in xij format
END FUNCTION QuadraturePoint_Hexahedron1
END INTERFACE QuadraturePoint_Hexahedron
order

order of accuracy in x, y, and z directions.

xij
  • xij contains nodal coordinates of hexahedron in xij format.
    • The number of rows in xij is 3
    • The number of columns in xij is 8
    • If xij is absent then biunit hexahedron is assumed.
quadType
  • quadType is quadrature point type, it can take following values
    • GaussLegendre
    • GaussLegendreLobatto
    • GaussLegendreRadauLeft
    • GaussLegendreRadauRight
    • GaussChebyshev
    • GaussChebyshevLobatto
    • GaussChebyshevRadauLeft
    • GaussChebyshevRadauRight
    • GaussJacobi
    • GaussJacobiLobatto
    • GaussJacobiRadauLeft
    • GaussJacobiRadauRight
    • GaussUltraspherical
    • GaussUltrasphericalLobatto
    • GaussUltrasphericalRadauLeft
    • GaussUltrasphericalRadauRight
alpha, beta, lambda
  • alpha and beta are parameters for Jacobi quadrature points
  • lambda is the parameter for Ultraspherical quadrature points

Interface 2

INTERFACE QuadraturePoint_Hexahedron
MODULE FUNCTION QuadraturePoint_Hexahedron2( &
& p, q, r, &
& quadType1, quadType2, quadType3, &
& xij, &
& alpha1, beta1, lambda1, &
& alpha2, beta2, lambda2, &
& alpha3, beta3, lambda3 &
& ) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: p
!! order of integrand in x direction
INTEGER(I4B), INTENT(IN) :: q
!! order of integrand in y direction
INTEGER(I4B), INTENT(IN) :: r
!! order of integrand in z direction
INTEGER(I4B), INTENT(IN) :: quadType1, quadType2, quadType3
!! quadrature point type in x direction
!! Equidistance
!! GaussLegendre
!! GaussLegendreLobatto
!! GaussLegendreRadauLeft
!! GaussLegendreRadauRight
!! GaussChebyshev1
!! GaussChebyshev1Lobatto
!! GaussChebyshev1RadauLeft
!! GaussChebyshev1RadauRight
!! GaussUltraspherical
!! GaussUltrasphericalLobatto
!! GaussUltrasphericalRadauLeft
!! GaussUltrasphericalRadauRight
!! GaussJacobi
!! GaussJacobiLobatto
!! GaussJacobiRadauLeft
!! GaussJacobiRadauRight
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! four vertices of quadrangle in xij format
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha1, beta1, lambda1
!! Jacobi parameter and Ultraspherical parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha2, beta2, lambda2
!! Jacobi parameter and Ultraspherical parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha3, beta3, lambda3
!! Jacobi parameter and Ultraspherical parameter
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! interpolation points in xij format
END FUNCTION QuadraturePoint_Hexahedron2
END INTERFACE QuadraturePoint_Hexahedron
p,q,r

Order of accuracy in x, y, and z directions.

quadType1, quadType2, quadType3

Quadrature type in x, y, and z direction. It can take following values

  • GaussLegendre
  • GaussLegendreLobatto
  • GaussLegendreRadauLeft
  • GaussLegendreRadauRight
  • GaussChebyshev
  • GaussChebyshevLobatto
  • GaussChebyshevRadauLeft
  • GaussChebyshevRadauRight
  • GaussJacobi
  • GaussJacobiLobatto
  • GaussJacobiRadauLeft
  • GaussJacobiRadauRight
  • GaussUltraspherical
  • GaussUltrasphericalLobatto
  • GaussUltrasphericalRadauLeft
  • GaussUltrasphericalRadauRight
alpha, beta, and lambda

These are parameters of Jacobi and Ultraspherical quadrature points.

Interface 3

INTERFACE QuadraturePoint_Hexahedron
MODULE FUNCTION QuadraturePoint_Hexahedron3(nips, quadType, &
& xij, alpha, beta, lambda) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: nips(1)
!! number of integration points in x, y, and z direction
INTEGER(I4B), INTENT(IN) :: quadType
!! interpolation point type
!! GaussLegendre
!! GaussLegendreLobatto
!! GaussLegendreRadauLeft
!! GaussLegendreRadauRight
!! GaussChebyshev1
!! GaussChebyshev1Lobatto
!! GaussChebyshev1RadauLeft
!! GaussChebyshev1RadauRight
!! GaussUltraspherical
!! GaussUltrasphericalLobatto
!! GaussUltrasphericalRadauLeft
!! GaussUltrasphericalRadauRight
!! GaussJacobi
!! GaussJacobiLobatto
!! GaussJacobiRadauLeft
!! GaussJacobiRadauRight
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! four vertices of quadrangle in xij format
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha
!! Jacobi parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: beta
!! Jacobi parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: lambda
!! Ultraspherical parameter
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! interpolation points in xij format
END FUNCTION QuadraturePoint_Hexahedron3
END INTERFACE QuadraturePoint_Hexahedron
nips

Number of integration points in x, y, and z direction.

Interface 4

INTERFACE QuadraturePoint_Hexahedron
MODULE FUNCTION QuadraturePoint_Hexahedron4( &
& nipsx, nipsy, nipsz, &
& quadType1, quadType2, quadType3, &
& xij, &
& alpha1, beta1, lambda1, &
& alpha2, beta2, lambda2, &
& alpha3, beta3, lambda3 &
& ) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: nipsx(1)
!! order of integrand in x direction
INTEGER(I4B), INTENT(IN) :: nipsy(1)
!! order of integrand in y direction
INTEGER(I4B), INTENT(IN) :: nipsz(1)
!! order of integrand in z direction
INTEGER(I4B), INTENT(IN) :: quadType1, quadType2, quadType3
!! quadrature point type in x, y, and z direction
!! Equidistance
!! GaussLegendre
!! GaussLegendreLobatto
!! GaussLegendreRadauLeft
!! GaussLegendreRadauRight
!! GaussChebyshev1
!! GaussChebyshev1Lobatto
!! GaussChebyshev1RadauLeft
!! GaussChebyshev1RadauRight
!! GaussUltraspherical
!! GaussUltrasphericalLobatto
!! GaussUltrasphericalRadauLeft
!! GaussUltrasphericalRadauRight
!! GaussJacobi
!! GaussJacobiLobatto
!! GaussJacobiRadauLeft
!! GaussJacobiRadauRight
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! four vertices of quadrangle in xij format
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha1, beta1, lambda1
!! Jacobi and Ultraspherical parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha2, beta2, lambda2
!! Jacobi and Ultraspherical parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha3, beta3, lambda3
!! Jacobi and Ultraspherical parameter
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! interpolation points in xij format
END FUNCTION QuadraturePoint_Hexahedron4
END INTERFACE QuadraturePoint_Hexahedron
nipsx, nipsy, nipsz

Number of integration points in x, y, and z direction.