VertexBasis
Returns the vertex basis.
Interface 1
- ܀ Interface
- ️܀ See example
- ↢
INTERFACE VertexBasis_Hexahedron
MODULE PURE FUNCTION VertexBasis_Hexahedron1(x, y, z) &
& RESULT(ans)
REAL(DFP), INTENT(IN) :: x(:), y(:), z(:)
!! point of evaluation
REAL(DFP) :: ans(SIZE(x), 8)
!! ans(:,v1) basis function of vertex v1 at all points
END FUNCTION VertexBasis_Hexahedron1
END INTERFACE VertexBasis_Hexahedron
x
x coordinate of all points.
y
y coordinate of all points.
z
z coordinate of all points.
PROGRAM main
USE easifemBase
USE easifemClasses
IMPLICIT NONE
REAL(DFP), ALLOCATABLE :: xxx(:, :, :), yyy(:, :, :), zzz(:, :, :), &
& x(:), y(:), z(:), basisValue(:, :), val(:, :, :)
TYPE(VTKPlot_) :: avtk
TYPE(string) :: label(8)
INTEGER(I4B) :: ii
x = linspace(-1.0_DFP, 1.0_DFP, 11)
y = linspace(-1.0_DFP, 1.0_DFP, 11)
z = linspace(-1.0_DFP, 1.0_DFP, 11)
CALL MeshGrid(xxx, yyy, zzz, x, y, z)
x = RESHAPE(xxx, [SIZE(xxx)])
y = RESHAPE(yyy, [SIZE(yyy)])
z = RESHAPE(zzz, [SIZE(zzz)])
basisValue = VertexBasis_Hexahedron(x, y, z)
DO ii = 1, SIZE(label)
label(ii) = tostring(ii)
END DO
CALL avtk%Plot(xxx, yyy, zzz, basisValue, label, "vertexBasis.vts")
END PROGRAM main
Interface 2
INTERFACE VertexBasis_Hexahedron
MODULE PURE FUNCTION VertexBasis_Hexahedron3(xij) &
& RESULT(ans)
REAL(DFP), INTENT(IN) :: xij(:, :)
!! point of evaluation
REAL(DFP) :: ans(SIZE(xij, 2), 8)
!! ans(:,v1) basis function of vertex v1 at all points
END FUNCTION VertexBasis_Hexahedron3
END INTERFACE VertexBasis_Hexahedron