Skip to main content

LegendreGradientEvalSum

Evaluate finite sum of gradient of Legendre polynomials.

Interface 1

INTERFACE
MODULE PURE FUNCTION LegendreGradientEvalSum(n, x, coeff) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: x
!! point
REAL(DFP), INTENT(IN) :: coeff(0:n)
!! Coefficient of finite sum, size = n+1
REAL(DFP) :: ans
!! Evaluate Legendre polynomial of order n at point x
END FUNCTION LegendreGradientEvalSum
END INTERFACE

Interface 2

INTERFACE
MODULE PURE FUNCTION LegendreGradientEvalSum(n, x, coeff) &
& RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: x(:)
!! point
REAL(DFP), INTENT(IN) :: coeff(0:n)
!! Coefficient of finite sum, size = n+1
REAL(DFP) :: ans(SIZE(x))
!! Evaluate Legendre polynomial of order n at point x
END FUNCTION LegendreGradientEvalSum
END INTERFACE

Interface 3

INTERFACE
MODULE PURE FUNCTION LegendreGradientEvalSum(n, x, coeff, k) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: x
!! point
REAL(DFP), INTENT(IN) :: coeff(0:n)
!! Coefficient of finite sum, size = n+1
INTEGER(I4B), INTENT(IN) :: k
!! order of derivative
REAL(DFP) :: ans
!! Evaluate Legendre polynomial of order n at point x
END FUNCTION LegendreGradientEvalSum
END INTERFACE

Interface 4

INTERFACE
MODULE PURE FUNCTION LegendreGradientEvalSum(n, x, coeff, k) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: x(:)
!! point
REAL(DFP), INTENT(IN) :: coeff(0:n)
!! Coefficient of finite sum, size = n+1
INTEGER(I4B), INTENT(IN) :: k
!! kth order derivative
REAL(DFP) :: ans(SIZE(x))
!! Evaluate Legendre polynomial of order n at point x
END FUNCTION LegendreGradientEvalSum
END INTERFACE