Chebyshev1JacobiMatrix
Chebyshev1 matrix for Jacobi polynomials.
INTERFACE
MODULE PURE SUBROUTINE Chebyshev1JacobiMatrix(n, D, E, alphaCoeff, betaCoeff)
INTEGER(I4B), INTENT(IN) :: n
!! n should be greater than or equal to 1
REAL(DFP), INTENT(OUT) :: D(:)
!! the size should be 1:n
REAL(DFP), INTENT(OUT) :: E(:)
!! the size should be 1:n-1
REAL(DFP), OPTIONAL, INTENT(OUT) :: alphaCoeff(0:)
!! recurrence coefficient of monic legendre polynomial, from 0 to n-1
REAL(DFP), OPTIONAL, INTENT(OUT) :: betaCoeff(0:)
!! recurrence coefficient of monic legendre polynomial, from 0 to n-1
END SUBROUTINE Chebyshev1JacobiMatrix
END INTERFACE
Examples
- ️܀ See example
- ↢
program main
use easifemBase
implicit none
INTEGER( I4B ), parameter :: n = 5
REAL( DFP ) :: D(n), E(n), alphaCoeff(n), betaCoeff(n)
CALL Chebyshev1JacobiMatrix(n,D, E, alphaCoeff, betaCoeff)
CALL Display(D, "D: ")
CALL Display(E, "E: ")
CALL Display(alphaCoeff, "alphaCoeff: ")
CALL Display(betaCoeff, "betaCoeff: ")
end program main
See results
results
D:
-------
0.00000
0.00000
0.00000
0.00000
0.00000
E:
-------
0.70711
0.50000
0.50000
0.50000
0.00000
alphaCoeff:
------------
0.00000
0.00000
0.00000
0.00000
0.00000
betaCoeff:
-----------
3.14159
0.50000
0.25000
0.25000
0.25000