Skip to main content

Chebyshev1GaussQuadrature

This routine computes the n Gauss-Quadrature points.

All Gauss-Quadrature points are inside (1,1)(-1, 1)

Interface

INTERFACE
MODULE SUBROUTINE Chebyshev1GaussQuadrature(n, pt, wt)
INTEGER(I4B), INTENT(IN) :: n
!! It represents the order of Chebyshev1 polynomial
REAL(DFP), INTENT(OUT) :: pt(:)
!! the size is 1 to n
REAL(DFP), OPTIONAL, INTENT(OUT) :: wt(:)
!! the size is 1 to n
END SUBROUTINE Chebyshev1GaussQuadrature
END INTERFACE

Chebyshev-Gauss Quadrature points

Chebyshev1 Gauss Quadrature n = 1

1.03412E-133.1416

Chebyshev1 Gauss Quadrature n = 2

-0.707111.5708
0.707111.5708

Chebyshev1 Gauss Quadrature n = 3

-0.866031.0472
1.03412E-131.0472
0.866031.0472

Chebyshev1 Gauss Quadrature n = 4

-0.923880.7854
-0.382680.7854
0.382680.7854
0.923880.7854

Chebyshev1 Gauss Quadrature n = 5

-0.951060.62832
-0.587790.62832
1.03412E-130.62832
0.587790.62832
0.951060.62832

Chebyshev1 Gauss Quadrature n = 6

-0.965930.5236
-0.707110.5236
-0.258820.5236
0.258820.5236
0.707110.5236
0.965930.5236

Chebyshev1 Gauss Quadrature n = 7

-0.974930.4488
-0.781830.4488
-0.433880.4488
1.03412E-130.4488
0.433880.4488
0.781830.4488
0.974930.4488

Chebyshev1 Gauss Quadrature n = 8

-0.980790.3927
-0.831470.3927
-0.555570.3927
-0.195090.3927
0.195090.3927
0.555570.3927
0.831470.3927
0.980790.3927

Chebyshev1 Gauss Quadrature n = 9

-0.984810.34907
-0.866030.34907
-0.642790.34907
-0.342020.34907
1.03412E-130.34907
0.342020.34907
0.642790.34907
0.866030.34907
0.984810.34907

Chebyshev1 Gauss Quadrature n = 10

-0.987690.31416
-0.891010.31416
-0.707110.31416
-0.453990.31416
-0.156430.31416
0.156430.31416
0.453990.31416
0.707110.31416
0.891010.31416
0.987690.31416