BarycentricEdgeBasis
Returns the edge basis functions on reference Triangle.
Interface
- ܀ Interface
- ️܀ See example
- ↢
INTERFACE
MODULE PURE FUNCTION BarycentricEdgeBasis_Triangle(pe1, pe2, pe3, lambda) &
& RESULT(ans)
INTEGER(I4B), INTENT(IN) :: pe1
!! order on edge (e1)
INTEGER(I4B), INTENT(IN) :: pe2
!! order on edge (e2)
INTEGER(I4B), INTENT(IN) :: pe3
!! order on edge (e3)
REAL(DFP), INTENT(IN) :: lambda(:, :)
!! point of evaluation in terms of barycentric coordinates
!! Number of rows in lambda is equal to three.
REAL(DFP) :: ans(SIZE(lambda, 2), pe1 + pe2 + pe3 - 3)
END FUNCTION BarycentricEdgeBasis_Triangle
END INTERFACE
program main
use easifembase
use easifemClasses
implicit none
real(dfp), allocatable :: xij(:,:), avec(:), lambda(:, :)
integer(i4b) :: ii, jj, cnt, n
n = 51
call reallocate(avec, n)
call reallocate(xij, 2, int((n+1)*(n+2)/2))
avec= linspace(0.0_DFP, 1.0_DFP, n)
cnt=0
do ii = 1, n
do jj = 1, n-ii+1
cnt=cnt+1
xij(1,cnt) = avec(ii)
xij(2,cnt) = avec(jj)
end do
end do
lambda = BarycentricCoordTriangle(xij, "UNIT")
BLOCK
real(dfp), allocatable :: ans(:,:)
integer(i4b) :: ii, order, pe1, pe2, pe3
type( VTKPlot_ ) :: aplot
character(len=*), parameter :: fname="./results/"
!!
order=4
pe1=order; pe2 = order; pe3 = order
!!
ans = BarycentricEdgeBasis_Triangle(&
& pe1=pe1, pe2=pe2, pe3=pe3 , &
& lambda=lambda )
!!
do ii = 1, size(ans,2)
call aplot%scatter3D(x=xij(1,:), y=xij(2, :), z=ans(:,ii), &
& filename=fname//"PVertexBary( order=" // tostring(order) // &
& ", pe1="//tostring(pe1) // &
& ", pe2="//tostring(pe2) // &
& ", pe3="//tostring(pe3) // &
& " )" // tostring(ii) // &
& " )" // tostring(ii) // &
& ".vtp", &
& label="P")
end do
!!
END BLOCK
end program main