STDiffusionMatrixIntroductionOn this pageIntroduction Theory M(I,J)=∫In∫Ω∂NITa∂xi∂NJTb∂xidΩdtM(I,J)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x_{i}}\frac{\partial N^{J}T_{b}}{\partial x_{i}}d\Omega dtM(I,J)=∫In∫Ω∂xi∂NITa∂xi∂NJTbdΩdt M(I,J)=∫In∫Ωρ∂NITa∂xi∂NJTb∂xidΩdtM(I,J)=\int_{I_{n}}\int_{\Omega}\rho\frac{\partial N^{I}T_{a}}{\partial x_{i}}\frac{\partial N^{J}T_{b}}{\partial x_{i}}d\Omega dtM(I,J)=∫In∫Ωρ∂xi∂NITa∂xi∂NJTbdΩdt M(I,J)=∫In∫Ω∂NITa∂xikij∂NJTb∂xjdΩdtM(I,J)=\int_{I_{n}}\int_{\Omega}\frac{\partial N^{I}T_{a}}{\partial x_{i}}k_{ij}\frac{\partial N^{J}T_{b}}{\partial x_{j}}d\Omega dtM(I,J)=∫In∫Ω∂xi∂NITakij∂xj∂NJTbdΩdt M(I,J)=∫In∫Ωρ∂NITa∂xikij∂NJTb∂xjdΩdtM(I,J)=\int_{I_{n}}\int_{\Omega}\rho\frac{\partial N^{I}T_{a}}{\partial x_{i}}k_{ij}\frac{\partial N^{J}T_{b}}{\partial x_{j}}d\Omega dtM(I,J)=∫In∫Ωρ∂xi∂NITakij∂xj∂NJTb