EvalallOrthopol
Evaluate orthogonal polynomials.
Interface
INTERFACE
MODULE PURE FUNCTION EvalAllOrthopol(n, x, orthopol, alpha, beta, &
& lambda) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: n
!! order of polynomial
REAL(DFP), INTENT(IN) :: x(:)
!! points of evaluation
INTEGER(I4B), INTENT(IN) :: orthopol
!! orthogonal polynomial family
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha
!! alpha1 needed when orthopol1 is "Jacobi"
REAL(DFP), OPTIONAL, INTENT(IN) :: beta
!! beta1 is needed when orthopol1 is "Jacobi"
REAL(DFP), OPTIONAL, INTENT(IN) :: lambda
!! lambda1 is needed when orthopol1 is "Ultraspherical"
REAL(DFP) :: ans(SIZE(x), n + 1)
END FUNCTION EvalAllOrthopol
END INTERFACE
nn denotes the order of polynomial space.
xx denotes the 1D points of evaluation.
orthopolCurrently, we can specify following types of orthogonal polynomials:
- Jacobi
- Ultraspherical
- Legendre
- Chebyshev
- Lobatto
- UnscaledLobatto
alpha, betaalpha and beta are parameters of Jacobi Polynomials. They should be present when orthopol is equal to Jacobi
lambdalambda is parameter for Ultraspherical polynomials. They should be present when orthopol is equal to the Ultraspherical
ans- The jth col of
ansdenotes the value of jth polynomial at all points. - The ith row of
ansdenotes the value of all polynomials at ith point.