Skip to main content

Structure

Diffusion matrix 1

M(I,J)=ΩNIxiNJxidΩM(I,J)=\int_{\Omega}\frac{\partial N^{I}}{\partial x_{i}}\frac{\partial N^{J}}{\partial x_{i}}d\Omega

Interface:

PURE FUNCTION DiffusionMatrix(test, trial, opt) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
CLASS(ElemshapeData_), INTENT(IN) :: trial
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 2

M(I,J)=ΩρNIxiNJxidΩM(I,J)=\int_{\Omega}\rho\frac{\partial N^{I}}{\partial x_{i}}\frac{\partial N^{J}}{\partial x_{i}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, k, krank, opt) &
& RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: k
!! scalar
TYPE(FEVariableScalar_), INTENT( IN ) :: krank
!! scalar fe variable
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 3

M(I,J)=ΩNIxiaiajNJxjdΩM(I,J)=\int_{\Omega}\frac{\partial N^{I}}{\partial x_{i}}a_{i}a_{j}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, k, krank, opt) &
& RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: k
!! vector
TYPE(FEVariableVector_), INTENT( IN ) :: krank
!! vector
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 4

M(I,J)=ΩNIxikijNJxjdΩM(I,J)=\int_{\Omega}\frac{\partial N^{I}}{\partial x_{i}}k_{ij}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, k, krank, opt) &
& RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: k
!! matrix
TYPE(FEVariableMatrix_), INTENT(IN) :: krank
!! matrix
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 5

M(I,J)=ρ1ρ2NIxiNJxjdΩM(I,J)=\int\rho_{1}\rho_{2}\frac{\partial N^{I}}{\partial x_{i}}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Scalar
CLASS(FEVariable_), INTENT(IN) :: c2
!! Scalar
TYPE(FEVariableScalar_), INTENT( IN ) :: c1rank
!! Scalar
TYPE(FEVariableScalar_), INTENT( IN ) :: c2rank
!! Scalar
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 6

M(I,J)=ρNIxivivjNJxjdΩM(I,J)=\int\rho\frac{\partial N^{I}}{\partial x_{i}}v_{i}v_{j}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Scalar
CLASS(FEVariable_), INTENT(IN) :: c2
!! Vector
TYPE(FEVariableScalar_), INTENT( IN ) :: c1rank
!! Scalar
TYPE(FEVariableVector_), INTENT( IN ) :: c2rank
!! Vector
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 7

M(I,J)=ρ1NIxikijNJxjdΩM(I,J)=\int\rho_{1}\frac{\partial N^{I}}{\partial x_{i}}k_{ij}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Scalar
CLASS(FEVariable_), INTENT(IN) :: c2
!! Matrix
TYPE(FEVariableScalar_), INTENT( IN ) :: c1rank
!! Scalar
TYPE(FEVariableMatrix_), INTENT( IN ) :: c2rank
!! Matrix
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 8:

M(I,J)=ρNIxivivjNJxjdΩM(I,J)=\int\rho\frac{\partial N^{I}}{\partial x_{i}}v_{i}v_{j}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Vector
CLASS(FEVariable_), INTENT(IN) :: c2
!! Scalar
TYPE(FEVariableVector_), INTENT( IN ) :: c1rank
!! Vector
TYPE(FEVariableScalar_), INTENT( IN ) :: c2rank
!! Scalar
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 9:

M(I,J)=NIxiviwjNJxjdΩM(I,J)=\int\frac{\partial N^{I}}{\partial x_{i}}v_{i}w_{j}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Vector
CLASS(FEVariable_), INTENT(IN) :: c2
!! Vector
TYPE(FEVariableVector_), INTENT( IN ) :: c1rank
!! Vector
TYPE(FEVariableVector_), INTENT( IN ) :: c2rank
!! Vector
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 10:

M(I,J)=NIxivpbpivqbqjNJxjdΩM(I,J)=\int\frac{\partial N^{I}}{\partial x_{i}}v_{p}b_{pi}v_{q}b_{qj}\frac{\partial N^{J}}{\partial x_{j}}d\Omega
  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Vector
CLASS(FEVariable_), INTENT(IN) :: c2
!! Matrix
TYPE(FEVariableVector_), INTENT( IN ) :: c1rank
!! Vector
TYPE(FEVariableMatrix_), INTENT( IN ) :: c2rank
!! Matrix
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 11:

M(I,J)=ρ1NIxikijNJxjdΩM(I,J)=\int\rho_{1}\frac{\partial N^{I}}{\partial x_{i}}k_{ij}\frac{\partial N^{J}}{\partial x_{j}}d\Omega
  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Matrix
CLASS(FEVariable_), INTENT(IN) :: c2
!! Scalar
TYPE(FEVariableMatrix_), INTENT( IN ) :: c1rank
!! Matrix
TYPE(FEVariableScalar_), INTENT( IN ) :: c2rank
!! Scalar
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 12:

M(I,J)=NIxibipvpbjqvqNJxjdΩM(I,J)=\int\frac{\partial N^{I}}{\partial x_{i}}b_{ip}v_{p}b_{jq}v_{q}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

Interface:

  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Matrix
CLASS(FEVariable_), INTENT(IN) :: c2
!! Vector
TYPE(FEVariableMatrix_), INTENT( IN ) :: c1rank
!! Matrix
TYPE(FEVariableVector_), INTENT( IN ) :: c2rank
!! Vector
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 13:

M(I,J)=NIxibipcpjNJxjdΩM(I,J)=\int\frac{\partial N^{I}}{\partial x_{i}}b_{ip}c_{pj}\frac{\partial N^{J}}{\partial x_{j}}d\Omega
  MODULE PURE FUNCTION DiffusionMatrix(test, trial, c1, c2, c1rank, &
& c2rank, opt ) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: c1
!! Matrix
CLASS(FEVariable_), INTENT(IN) :: c2
!! Matrix
TYPE(FEVariableMatrix_), INTENT( IN ) :: c1rank
!! Matrix
TYPE(FEVariableMatrix_), INTENT( IN ) :: c2rank
!! Matrix
INTEGER( I4B ), OPTIONAL, INTENT( IN ) :: opt
!! ncopy
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 14:

opt=[1]

[M]IJij=NIxiNJxjdΩ\left[M\right]_{IJ}^{ij}=\int\frac{\partial N^{I}}{\partial x_{i}}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

opt=[2]

[M]IJij=NIxjNJxidΩ\left[M\right]_{IJ}^{ij}=\int\frac{\partial N^{I}}{\partial x_{j}}\frac{\partial N^{J}}{\partial x_{i}}d\Omega
  MODULE PURE FUNCTION DiffusionMatrix(test, trial, opt) RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
CLASS(ElemshapeData_), INTENT(IN) :: trial
INTEGER( I4B ), INTENT( IN ) :: opt( 1 )
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix

Diffusion matrix 15:

opt=[1]

[M]IJij=ρNIxiNJxjdΩ\left[M\right]_{IJ}^{ij}=\int\rho\frac{\partial N^{I}}{\partial x_{i}}\frac{\partial N^{J}}{\partial x_{j}}d\Omega

opt=[2]

[M]IJij=ρNIxjNJxidΩ\left[M\right]_{IJ}^{ij}=\int\rho\frac{\partial N^{I}}{\partial x_{j}}\frac{\partial N^{J}}{\partial x_{i}}d\Omega
  MODULE PURE FUNCTION DiffusionMatrix(test, trial, k, krank, opt) &
& RESULT(ans)
CLASS(ElemshapeData_), INTENT(IN) :: test
!! test function
CLASS(ElemshapeData_), INTENT(IN) :: trial
!! trial function
CLASS(FEVariable_), INTENT(IN) :: k
!! scalar
TYPE(FEVariableScalar_), INTENT( IN ) :: krank
!! scalar fe variable
INTEGER( I4B ), INTENT( IN ) :: opt(1)
REAL(DFP), ALLOCATABLE :: ans(:, :)
END FUNCTION DiffusionMatrix