Skip to main content

Isotropic elasticity

In the case of isotropic linear elasticity, we need only two material parameters to describe the CC tensor (or, stress-strain relationship). The following choices of material parameters are popular.

  • Lame parameters: λ\lambda and μ\mu
  • Young's modulus EE and shear modulus GG
  • Young's modulus EE and Poisson's ration ν\nu

In terms of Lame parameter CC is given by following relationship.

Cijkl=λδijδkl+μ(δikδjl+δilδjk)C_{ijkl}=\lambda\delta_{ij}\delta_{kl}+\mu\left(\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}\right)

The stress-strain relationship is given by following:

σij=λεkkδij+2μεij\sigma_{ij}=\lambda\varepsilon_{kk}\delta_{ij}+2\mu\varepsilon_{ij}

or

σij=(3λ+2μ)εkk3δij+2μdev(εij)\sigma_{ij}=\left(3\lambda+ 2\mu\right)\frac{\varepsilon_{kk}}{3}\delta_{ij}+2\mu\text{dev}\left(\varepsilon_{ij}\right)

where dev(ε)\text{dev}(\varepsilon) is the Deviatoric strain tensor which is given by

dev(ε)=ε13tr(ε)1\text{dev}(\varepsilon) = \varepsilon - \frac{1}{3} \text{tr}(\varepsilon) \textbf{1}

The term (3λ+2μ)\left(3\lambda+ 2\mu \right) is also known as the bulk modulus of the material.

The Voigt form of the stiffness tensor CC in terms of EE and ν\nu is given by following expression:

C=E(1+ν)(12ν)[1νννν1νννν1ν12ν212ν212ν2]C = \frac{E}{(1+\nu)(1-2\nu)}\left[\begin{array}{cccccc} 1-\nu & \nu & \nu\\ \nu & 1-\nu & \nu\\ \nu & \nu & 1-\nu\\ & & & \frac{1-2\nu}{2}\\ & & & & \frac{1-2\nu}{2}\\ & & & & & \frac{1-2\nu}{2} \end{array}\right]

Similary, the inverse of CC is given by:

C1=1E[1ννν1ννν12+2ν2+2ν2+2ν]C^{-1} =\frac{1}{E}\left[\begin{array}{cccccc} 1 & -\nu & -\nu\\ -\nu & 1 & -\nu\\ -\nu & -\nu & 1\\ & & & 2+2\nu\\ & & & & 2+2\nu\\ & & & & & 2+2\nu \end{array}\right]

Plane stress

In the case of plane-stress, we use the following relationship between stress and strain.

[σ11σ22σ12]=E1ν2[1ν0ν10001ν2][ε11ε222ε12]\begin{bmatrix}\sigma_{11}\\ \sigma_{22}\\ \sigma_{12} \end{bmatrix}=\frac{E}{1-\nu^{2}}\begin{bmatrix}1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}\begin{bmatrix}\varepsilon_{11}\\ \varepsilon_{22}\\ 2\varepsilon_{12} \end{bmatrix} [ε11ε222ε12]=1E[1ν0ν10002+2ν][σ11σ22σ12]\begin{bmatrix}\varepsilon_{11}\\ \varepsilon_{22}\\ 2\varepsilon_{12} \end{bmatrix}=\frac{1}{E}\begin{bmatrix}1 & -\nu & 0\\ -\nu & 1 & 0\\ 0 & 0 & 2+2\nu \end{bmatrix}\begin{bmatrix}\sigma_{11}\\ \sigma_{22}\\ \sigma_{12} \end{bmatrix}

Plane strain

Similary, in the case of plane-strain, we use the following relationship between stress and strain.

[σ11σ22σ12]=E(1+ν)(12ν)[1νν0ν1ν00012ν2][ε11ε222ε12]\begin{bmatrix}\sigma_{11}\\ \sigma_{22}\\ \sigma_{12} \end{bmatrix}=\frac{E}{(1+\nu)(1-2\nu)}\begin{bmatrix}1-\nu & \nu & 0\\ \nu & 1-\nu & 0\\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}\begin{bmatrix}\varepsilon_{11}\\ \varepsilon_{22}\\ 2\varepsilon_{12} \end{bmatrix} [ε11ε222ε12]=1+νE[1νν0ν1ν0002][σ11σ22σ12]\begin{bmatrix}\varepsilon_{11}\\ \varepsilon_{22}\\ 2\varepsilon_{12} \end{bmatrix}=\frac{1+\nu}{E}\begin{bmatrix}1-\nu & -\nu & 0\\ -\nu & 1-\nu & 0\\ 0 & 0 & 2 \end{bmatrix}\begin{bmatrix}\sigma_{11}\\ \sigma_{22}\\ \sigma_{12} \end{bmatrix}